Extensions 1→N→G→Q→1 with N=C23⋊C4 and Q=D7

Direct product G=N×Q with N=C23⋊C4 and Q=D7
dρLabelID
D7×C23⋊C4568+D7xC2^3:C4448,277

Semidirect products G=N:Q with N=C23⋊C4 and Q=D7
extensionφ:Q→Out NdρLabelID
C23⋊C41D7 = C7⋊C2≀C4φ: D7/C7C2 ⊆ Out C23⋊C4568+C2^3:C4:1D7448,28
C23⋊C42D7 = C23.2D28φ: D7/C7C2 ⊆ Out C23⋊C4568+C2^3:C4:2D7448,31
C23⋊C43D7 = C23⋊D28φ: D7/C7C2 ⊆ Out C23⋊C4568+C2^3:C4:3D7448,275
C23⋊C44D7 = C23.5D28φ: D7/C7C2 ⊆ Out C23⋊C41128-C2^3:C4:4D7448,276
C23⋊C45D7 = C23⋊C45D7φ: trivial image1128-C2^3:C4:5D7448,274

Non-split extensions G=N.Q with N=C23⋊C4 and Q=D7
extensionφ:Q→Out NdρLabelID
C23⋊C4.1D7 = (C2×C28).D4φ: D7/C7C2 ⊆ Out C23⋊C41128-C2^3:C4.1D7448,29
C23⋊C4.2D7 = C23.D28φ: D7/C7C2 ⊆ Out C23⋊C41128-C2^3:C4.2D7448,30

׿
×
𝔽